UNCLASSIFIED

AD NUMBER

AD465805

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors;

Adm ni strative/ Qperational Use; MAR 1965. O her
requests shall be referred to Arny Ballistic

Research Laboratories, Aberdeen Proving G ound,
MD 21005-5066.

AUTHORITY

USABRL per Itr, 5 Nov 1965

THISPAGE ISUNCLASSIFIED

BRL
1273
c. 3A

BRL R 1273

REPORT
NO. 1273

THE FORAST PROGRAMMING LANGUAGE FOR
BR

ORDVAC AND LESC (REVISED)

By Lloyd W. Campbell

Glenn A. Beck

g.n

MARCH 1965 ey

Bip,, AFg, MD:: 21005

COUNTED 1y

e amma

U. S. ARMY MATERIEL COMMAND
BALLISTIC RESEARCH LABORATORIES

ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed.
Do not return it to the originator.

DDC_AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from DDC.

The
an o
4

80 Qe

ndings in this report-are not to be construed as
icial Department of the Army position, unless
ignet her authorized documents.

BALLISTIC RESEARCH LABORATORTIES

REPORT NO. 1273

(Supersedes Report No. 1172)

MARCH 1965

FtorA
TSR] i
o

THE FORAST PROGRAMMING LANGUAGE FOR ORDVAC AND BRLESC (REVISED)

Lloyd W. Campbell
Glenn A. Beck

RDT & E Project No. 1PO14501A14B

s
os)
&
o
lw)
=
B3
=

PROVIN GROUND, MARYL

BALLISTIC RESEARCH LABORATORTIES

LWCampbell/GABeck
Aberdeen Proving Ground, Md.

L T e T =

March 1565

THE FORAST PROGRAMMING LANGUAGE FOR ORDVAC AND BRLESC (REVISED)

ABSTRACT

FORAST 18 a procedure oriented programming language designed for
use on the ORDVAC and BRLESC computers at BRL. Although it was designed
for professional programmers, FORAST contains sufficient simple concepts
to make it usable by a novice or journeyman. It permits the use of
arithmetic formulas, some English word statements, and each computer
accepts its own symbolic or absolute machine language. The latter
feature permits the professional programmer to use the full power of

each computer.

TABLE OF CONTENTS

I. INTRODUCTION..ssessessnsscsssancssssnse Cerecececcencnsenns 9

IT. CHARACTER BET ececececcococscosccsocscoscsosscssossssosssanss 11
III. NAMES AND ADIRESSES ccececoccccccescccccsccsocascsssscssss 172
IV. ARITHMETIC EXPRESSIONS ¢ecccoecccscocccccscsasscccscsosseas 15
V. ARITHMETIC FORMULAS ceeececcssvcococsccvseccsscassssossssse 10

VI. E:NGLISmeD STA’IMTS © 00800060600 00000060000000006006000060s00s0 19

] riAmA
Lo UULUe s 000000000 0000000000000t 000000000606006060006000000s00s 20

\N
.
g
.
.
.
.
.
.
.
.
.
g
.
\Y]
w

5e COUNT:eeeeocecscccccsacsosccscsssassassssssacsssssasaas 23
7 e S R e S B O 0 0000 00000 0 00 00O LON 00 OO T8 000
Be MOVEeeeeooeecoooovoscacsactssascsssssscososssasacsscseae 20

9. ENTER.ooooonooloollooool‘llooo.o.llllooo-nonoon.o.-..o 30

lo. READ andPRINT OI'PUNCH-......-...-o-----.-------.-..- 32

11. mToo.oooooolooooooloooooooooooo.ooooooooooooooo.o-.- 3

s
g

Y AM (A

A\vmw'Ame \A'AT....ooonoonoooooooooo..oooooo.oonooo.oo 37

.
[

VIII. USEOFLOCATIONFIELD..-----..-ooo--o-oo.o-----.-.-.....-. 38

AR

mN

L paviov %D&u\ J-J-LFNQ......................6..666655555..55

A.

5

[
L]

(=]

I3

E!b'

PROBeeoeesoooceocsessoscsososansasasssccsscsacasasas
BLOC: e eseceasesossoccsccssscsecosssssscsaccscscccnss
BYNeueeoceroooososoascsssosssossassssscscscccsscsannse
LOC.coeeeeocovcccssssoeensssososassoscccscaaccnconnse
LAST e eeseeoassssossasvascsveasssosssasasasonsossssess
00
LIST (Dictionary and Code Printing)eccececscsccccesce
DECo sinie e« o8 sisieesvsisiessosssseessssonsesssssssssossss
) {0
FORM.eoteeoooesoooescsnssssscsssssssssssasscsonssoss
BEXA.eceoeoscsosssscsscssossssescssscsssscasscssacee
. 1 S P
DATE. e eeeeececoccscosoccoscsossssosssasonsssoscassonee
MM, o« oo consnsacsacassassosanesesssceasssssscasesss
7)1
BTORe e eeeocerocccosscscsssososcesossssccssssssnsnncs
O e Fe R e R TR T e T TR Y R FeTeTeTe TRt Reto e e e Te Rt RN e ToereTe e

r J.-Ls

m.oooO...o...0000...000.000..0..00000.0.....0000.

SIJBR.....00.........0...00...000..0000..000.0...00.0
m..ggo.....0000.0.0.00.‘..0..onnooooooo.ooo...o...

OOT...

v

TABLE OF CONTENTS (Cont'd)

»<

LIST OF SUBROUTINES «vvvtececoroeorororoecacanasassseasons T4

=
=)

ANSLATOR ERROR PRINTS.. seveeesesesesesccrscssacasosensse 95

XIT. RUN ERROR PRINTS. ¢. o0 v et ot v oeorononoeonosacassnsneoansoss 100

XIIT. USE OF SOME SPECIAL NAMES.. .. ¢t et veeevevsoecasaoaseneossss 105

ERROR: s 0¢ 06 00 00 60 66 60 a0 seseseseoscessssosaeonsesessass 105

G U258 5 e 5o a0 0o 0o 6o 04 00 66 00 0o (o 06 06 06 60 0o 0o 0650 00t ALeI
XIV. MACHINE ASSEMBLY LANGUAGE.: v ve v o 00 o0 o0 o0 ou s0 vo o0 va se oo« 108

A. ORDVAC: 4 t4 ee en oe oo ve o0 a0 o0 o0 o0 o0 oo a0 o0 00 00 00 00 o0 o0 00« 108

td
3
£
147)]
(@]

@0 06 6% 9% 65 e e es 00 66 60 04 06 o4 o0 o0 o

.
-
-
-

XV. OPERATION AND SPEED OR ORDVAC TRANSLATOR.. et v4 e0 oo ov oo o0 o0 o 118
XVI. OPERATION AND SPEED OF BRLESC TRANSLATOR.. ¢. ei e o4 oo oo oo oo o 119

XVII. INSTRUCTIONS FOR RUNNING FORAST PROGRAMS ON ORDVAC.........

o}
no
’—J

XVIII. INSTRUCTIONS FOR RUNNING FORAST PROGRAMS ON BRLESC..

=
\Y)
[AV)

SUMMARY OF INSTRUCTIONS FOR RUNNING FORAST PROBLEMS

ON BRIESC.« ve o oo oe on e an sn se se a0 os 00 o0 oe o0 o0 o 0e en s s 125

A
y
y

P

. MISCELLANEOUS COMMENTS.. v ¢t ov et ot 0n 0n o0 on 00 va a0 00 o0 00 00 o0 s

b=t
n
-~

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D
APPENDIX E
APPENDIX F

APPENDIX G

TABLE OF CONTENTS (Cont'd)

Page
SYMBOLIC ORDVAC ORDER TYPES..... e 135
SYMBOLIC BRLESC ORDER TYPES.ve.onere... 130
SYMBOLIC C ADDRESS FOR BRLESC
INPUT-OUTPUT ORDERS. .+t vveennenn.. ereeee..138
NUMBER OF ELEMENTS IN TRIANGULAR ARRAYS.-.....139
SUMMARY OF PSEUDO ORDER TYPES.eee.e0....140
EXAMPLES OF ASSEMBLY CODE AND STATEMENTS......141
SAMPLE PROBLEMS. . eu v vnenveveveneonenneonns idli2

I. INTRODUCTION

FORAST 1s a programming language that is being used on the ORDVAC
and BRLESC computers at BRL. It allows a programmer to write a computer
program in a language that 1s closer to the English language and con-
ventional mathematical notation than the numerical machine language.

This simplifies the task of writing a program, makes it easier for
another person to read, and allows the same program to be translated

and run on either ORDVAC or BRLESC. While FORAST is a "problem-oriented"
language, it 1s closer to a good machine language than most similar
languages. FORAST also allows each machine to translate its own assembly
language so that the professional programmer may use the full power of
the ¢ 3

puter in any program.

t
The following objectives influenced the design of FORAST:

1. Fast translation with "load and go" operation.
2. Allow full usage of machine's capabilities.

3. Generation of efficient object programs.

4. Translator must fit 4096 word memory.

5 Human readability.

6. Used primarily for mathematical problems.

7. Compatability between ORDVAC and BRLESC.

While many of the above objectives conflict with each other, an
4

de to achieve an optimum compromise of the conflicting

program will illustrate a simple FORAST program. It

will read a pair of floating polnt numbers called X and Y, compute a

number called Z that is the square root of the sum of the squares of

>
o
o]
o]
[
[
o
oY
<
-
|,_-I
|,_-I
o
2]
(o5
o
ct
t
o
)
t
o
(]
0]
0]
:
o'
®
H
w
>
]
o
o
o9
N
(=4
o
o
H
|
o)
®
ot
s
=
U]

point form. Each 1i coding (and hence each key-punched card) may

contain either one or more machine orders in assembly language or one

LOCATION 0.7T. STATEMENTS
1.1 READ (X)(x)
Z = SQRT (X#*2 + Y**2)
PRINT (X)(Y)(2)% GoTo (1.1)
END GoTO (1.1)

This example 1llustrates four types of statements allowed in FCORAST.

statement is an arithmetic formula, On the left of the equality sign
is the name of the quantity that 1s to be computed. The formula or

expression to the right of the equality sign expresses the

“hape oSl o (120 Lwy

arithmetic that the computer should do to compute this new arithmetic

quantity. Note that X2 is written X¥*2 since superscripts or

pts cennot be key punched as such. SQRT is the standard name

that is used to represent the square root function. The PRINT state-
ment allows numerical results to be punched on cards. The GOTO state-
ment allows control to be directed to another statement . rather than
to the next one. Statements are done in the sequence that they are
written except when a GOTO statement 1s used to specify otherwise. Note

that the first statement has been given a "location" name of 1.1 and

Y o Vo s 1 } 1 wiaaiv

‘0 (1.1) means to go

b.
¢
:
g

ete
ment to be done in the running program. It is well to remember that
11 FORAST programs are done in two steps, first the entire symbolic
program is translated into a numerical machine language program with

assigned storage locations, and secondly, the program 1s r and the

[
(@]

desired computations performed and results produced.

The END card signals the completion of the translate phase. No
separate symbol is needed to signal the end of the running program; the

program runs until all data cards have been utilized. (An extra blank

card at the end of the deck is required.) This is the normal wa

b3
~
@]

k

stopping such programs at BRL. However, if no data cards are used in
the final part of a program, a GOTO (N.PROB)% statement should be used.
(See page 106). There is a HALT statement that may also be used, however
it is better to use GOTO (N.PROB)% because this will cause the computer
to stop at a standard "problem completed” halt.

II. CHARACTER SET

FORAST allows the use of the 26 capital letters, the 10 decimal

R
[~

gits, the decimal point, and prime (apostrophe) without any special
significance attached to any one of these characters. These characters
may be combined to make-up the names and locations of variables and

instructions.

The following characters have special meanings and must not be

used in names:

Card Punches Symbol and Meaning
X + 1s addition
Yy - 1s subtraction
X -4-8 * 1is multiplication
0-1 / is division
4 - 8 (1is left parenthesis
y -4-8) 1s right parenthesis
3-8 = 1is equals
0-4-8 % is end of statement
o - -8 s 1s used to indicate indexed addresses

Card Punches Symbol and Meening

x-5-28 < 48 less than
0-5-8 > 1is greater than
% ig exponentiation
4% is end of card (rest of the card 1is ignored)
< =o0or =< 1s less than or equsal
> =or => 1s greater than or equsl

The blank character is allowed and is ignored except when it is
included in alphsbetic information that is in a PRINT, PUNCH or ALFN
statement. The symbol b may be used to indicate a blank column to the

key punch operator.

The letters I and O must be written so as to be distinguishable from
the numbers 1 and 0. It is suggested that the letter I be written with
definite crossbars at top and bottom and the number one be written as a
straight line. A script letter O that is alsc larger than zero is
recommended. Some care must also be taken when writing S's and 5's, Z's
and 2's, B's and 8's and all other characters. Programmers are urged to

check the key punching of their programs.
ITI. NAMES AND ADDRESSES

The programmer may use symbolic names to represent the names of
variables and the locations of instructions and constants. The FORAST
translators translate these names into numerical machine memory addresses.
Hence each symbolic name represents a memory ceil. FORAST also allows

the use of absolute numerical addresses.

Symbolic addresses may be chosen so that they consist of one or more
characters with the following restrictions:

1. Must not contain any of the "special" characters. (See II)

2. Must not contain more than six characters unless the characters
after the first six are not required for unique identification.
(BLOC names on BRLESC may have as many as eight characters

with some restrictions. See page L45)

i2

3. Must contain at least one character that is not a decimal digit,
for example, a decimal point or some alphabetic character.

4. The leading character must not be zero. A leading zero is used
to indicate absolute sexadecimal addresses.

5. SELF can be used only to refer to the "location counter". (See
page 40).

6. Certain names (SIN, COS, I0G, etc.) have been reserved as the
names of subroutines and should not be used as the names of

variables. (See pages 75-95 far the complete list of subroutine

Some examples of symbolic names are X; TU; A3; 4J1; 1.1; SINA. The
name "1.1" may be either a symbolic address or a floating point number.
If it is written in an arithmetic expression, it is a number, otherwise
it is just a symbolic name. However, if it is followed by a comma, then

it would always be a symbolic name.

Absoclute machine addresses may be written in either decimal or sexa-
decimal. Sexadecimal sddresses must have at least one leading zero and
decimal addresses must not have a leading zero. Sexadecimal addresses
are never used as numbers because non-zero numbers must not have a lead-
ing zerc unless the first non-zero character is a decimal peint. The
single character O (zero) will be a number if it appears where numbers
are allowed. Decimal addresses will be used as numbers in arithmetic
expressions unless they are followed by a comma. Commas are not allowed
in numbers! Negative decimal addresses may be written and will be stored
as 2's complement addresses. The characters K, S, N, J, F, L, are used
for the sexadecimal characters ten, eleven, . . . , fifteen. For BRLESC,
absolute index register addresses must lie in the range 1 to 63 in decimal

or O1 to O3L in sexadecimal.

Indexed addresses may be written almost anywhere in FORAST. A
comma is used to indicate that an address is indexed and also separates

. ; :
the primary address from the index address. An address may be indexed

13

by one and only one index register. The actual or effective address
used at run time is the sum of the primary address and the contents of
the index register. Indexing may be used with any type of an address,
not Just those that are defined as blocks or arrays. Indexing is in

not in place of, constant "subscripts", thus, if Bl to B6

[4;]
o

e BLOC page 44), it is permissible to write B3,J. Some
examples of indexed addresses are A,1: B4,J: ,E: L2,I4: C,1k: C,0F:
;,OF. NOTE: A,-1 is not permissible. To get the same effect, first

pu

ct

1 4nta ¥ and +h
-1 into X and then use A,K.

Decimal or sexadecimal increments may be written with any symbolic
address. Thus a constant may be added or subtracted from a primary
address at translate time. In arithmetic expressions and formulas
(including the left side of formulas), the increment must be written
after the index name and the index name and increment enclosed in
parentheses. A,(F1): B,(1-2): Xu,(+3) are examples of addresses with

increments as they must be written ir

=

arithmetic expressions and formulas.
Note that the increment still may be used even if there is no index

register, thus X4,(+3) is an address that is three more than the address

~7

s not indexed. A sign must be used to distinguish an

[oD)
e

of Xk an
increment from an index register address. In any place other than

arithmetic expressions, (arithmetic expressions are allowed only in

necessary and the increment may be written either after t
address or after the index address. Thus A - 3: L4R3 + 6,II: X,J - 14

S
are legal addresses any place oth

D

r than arithmetic e

ii ad

n]
(13
[
n
s
Q
jn]
]
o
=]
o]

1h

NOTE CAREFULILY: Symbols of the form A + 3 outside of an
arithmetic expression refer to the address that is three greater than

the address assigned to A. It is safe to use such an expression when
referring to numbers since all numbers occupy one machine word. However,
such an expression should not be used when referring to locations of
statements unless the programmer ir familiar with the amount of code

that is generated by the statements. Thus, if A is a location, beware

of "GOTO (A+3)%". The machine language of ORDVAC is very different

from that of BRLESC and thus the number of words produced by the compiler
from a particular statement may be quite different on the two machines.
Note also that Al + 1 1is not necessarily the same address as A2, They

+hr anm~ e T
1 =4 (=)

ovn 49 A1 A
are the if and A2 are locations in a consecutive block

J Sl
that started at A or Al and includes A2.

Iv. ARITHMETIC EXPRESSIONS

Arithmetic expressions are allowed only in arithmetic formulas and
IF statements. They are used to indicate the arithmetic operations that
the computer should perform at run time and the special characters
described in II are used to indicate the types and sequence of the
desired operations. Arithmetic expressions are written much like they
are in normal algebraic and mathematical usage. However, some special
ules are necessary because everything must be written on on
a consecutive string of characters so that it is key punchable. Thus
superscripts, subscripts, and the normal over and under method of writing

fractions are not allowed and require special rules.

The operations that are allowed are:

l. + and - 5 addition and subtraction

2. *and / ; multiplication and division

3, ** F exponentiation

L, Single-valued functions of one variable. (subroutines)

Parentheses may be used to group these operations into any desired
sequence and are used in the same manner as they are in mathematics.
In the absence of parentheses, the operations that are lower on the
above list are performed before those that are higher on the list. Thus
multiplication is done before addition, st
exponentiation before subtraction, etc. Hence A + B/C**2 is the same
as A + (B/(C**2)) and C**2 15 the way % 1s written. For successive
operations that are on the same level; speclal rules apply when paren-
theses are omitted. Successive add or subtract operations are grouped
from the left, thus V + W - T is the same as (V + W) - T. Successive
multiply or divide operations are grouped from the right, thus A * R/B * S
is the same as A * (R/(B * S)). Since multiplication and division are
grouped from the right, parentheses are only required around any numerator
or denominator that involves addition or subtraction and usually requires
less parentheses than a left to right grouping. It also leads naturally

to a more efficient one-address machine code.

ed by writing a name adjacent to
either a left or right parenthesis or by following a right parenthesis
with a left one. Thus A * B may also be written as (A)B or A(B) or
(A)(B). It is not incorrect to use a redundant * symbol where a multi-
plication is so implied. Note that AB is a single symbolic address and
does not denote multiplication of A times B.

1es having only one argument and one result may be used in
arithmetic expressions by writing the standard name of the subroutine
followed by its argument enclosed in parentheses. The argument may be
ic expression and may use subroutines. See page 75 for the

standard list of subroutines allowed in arithmetic expressions.
) ; ARCTAN(X + EXP(R-S)) are some examples of the use of sub-

Successive exponentiations should always be grouped by using
parentheses. Without parentheses, ORDVAC groups them from left to

- ey

right and BRLESC groups them from right to left as they should be.
The power of the exponentiation may be any integer or non-integer
number or arithmetic expression. ©Small integer negative numbers may
hout being enclosed in parentheses, i.e.

*%_2, *¥%_5_ However ™*+" is illegal. A quantity being raised to

id should be written wit

o
o]

non-integer power must always be positive because the logarithm of
t number is used. A power of .5 causes the square root function

to be used. Constant integer powers of fifteen or less are accomplished

by in-line multiply orders plus one division order for negative integers.

Three types of arithmetic expressions are allowed, they are float-
ing point, integer and fixed point fraction. However, not more than
one type of arithmetic may be used in the same arithmetic expression.

j =gy

The type of arithmetic used in an expression is usually the "MODE" type.
(See page 59). However, it may be changed for any one expression by
writing "FLT(" or "FIX(" or "INT(" in front of any arithmetic formula
or relational clause in an IF statement. Constant numbezs written in
arithmetic expressions are converted to the form required for the type
of arithmetic being used in the expression. Fixed point fractional
points. A subroutine and an ENTER statement may be used to change variables
from one type of number to another. The standard subroutines allowed in
formulas all assume floating point arguments and hence must be used only

in floating point expressions. However, ABS (absolute value) may be used
with fractions and integers that are not stored in index registers. Index

registers on BRLESC are not full words and will always seem to be positive

BRLESC usually gives incorrect results and a negative integer product
on ORDVAC will have an improper zero sign bit. The power of exponentiation

17

must be a positive constant integer of fifteen or less in integer or
fractional expressions. (BRLESC doesallow integers to be raised
to any variable power or any constant power that does not have a
fractional part of .5 exactly.)

Constant numbers written in arithmetic expre

following rules:

w
4]
e
]
u‘
Lo/

(1) Commas are not allowed. Y

(2) Exponents and scale factors are not allowed.
(3) Signs are not allowed except for a minus sign after **,

(N2 e aet 17 ho 1m2d as ad hdaen ad aracand ases ma e
\ Signs will be used as add or subtract operators and the
\

numbers will be stored as positive.)
(4) leading zeros are allowed only if the first non-zero character
is a decimal

oint or if the number 1is zero

—~
U
~

Fixed point fractions must always contain a decimal point and
be less than one (sixteen on BRLESC) in absolute value.

V. ARITHMETIC FORMULAS

The arithmetic formula is the type of statement that is used the most
in writing FORAST programs. This statement has an arithmetic expression
that is to be evaluated written to the right of an = character and the
result is stored in the address specified on the left of the =. The
result may be stored in as many as fifteen different places by specifying
more than one address and having more than one = symbol to the left of
the arithmetic expression. Thus X =Y = A means to take the quantity
named A and store it in the memory locations called X and Y. Note that

the arithmetic expression may be just a single variable or number! The

Y=0% FLT(Q = A = B¥* . %

X=X+3% X,I = Y,I + SIN(A+B,I)/C,J*E

X=X, (#3) + 3% R,(J+2) = T1 ** 2 + 5 ** CoS(X3-X2)
FIX(X2,J = -X1 % (Note: the index register J, like any

other variable, 1s set only at run time)

18

The formula X = X + 3 shows that this type of statement is not
an equation that is to be solved. This example means that the value
three and stored back into the same memory
location.

Parentheses may be used to group operations in the usual manner.
They may be omitted at either end of the arithmetic part of the formula
because all right parentheses that are not closed on the left will auto-
matically be closed at the = symbol and all left parentheses that are
not closed on the right will asutomatically be closed at the % at the
end of the formula. The number and amount of nesting of parentheses is
practically unlimited. The amount of nesting is limited only by the
fact that the translators can save only 30 operations that have been
encountered by the left to right scan but not coded because of some
right to left grouping, either by parentheses or by a succession of

ide operations. Nesting that cause operations to be

The operations of + and - may be used as unary operations only at
the beginning of a formula or after a left parenthesis. The - symbol
may also be used as a sign after **¥ {f it is followed by a constant

number

umber. Th is the cnly exception to the rule that two operation symbols

I3

(+ - */) must not be written adjacent to each other.

VI. ENGLISH WORD STATEMENTS

LT
ne

ct

FORAST allows the use of a few English words to imstruct

&
computer to do certain operations. There are eleven of these statements,
ch de

each of which begins with a special English word that determines the

type of tement. All of the statements may be inlterspersed among

arithmetic formulas. Arithmetic expressions are not allowed in any of these

19

statements except in the relational clauses of the IF statement. All

other statements use only addresses which may have an increment as

GOTO: SET: SETEA: INC: COUNT: IF: CLEAR: MOVE: ENTER: READ and PRINT

T Wile asdiaada

General Form: GOTO (Location to go to)%

The words GO TC {or GOTO) may be used to tell the computer ‘o
go to a location of a statement that does not follow the statement that
has Jjust been done. Statements are normally done in the same sequence
written in, however this GOTO statement (and a few other state-
ments) may be used to change that sequence. The location of the state-

ment to be done next 1s enclosed in parentheses. Some examples are

GOTO(BOX2)% GOTO(START)%
GOTO(4.2)% GoTo(,E)%

Note that the address may be indexed and the last exampie 1llustrates
how "remote connections" can be handled in FORAST. Since an index
ister can hold an entire address; not merely the customary increment

_____ P

to an address, the address to go to may be whatever address has been

last set into an index register (by a SET statement) in the running

program. This idea of using index registers for "address substitution"

addresses. Note that the addition of the contents of an index register
to the primary address is still performed and while the primary address
{s usually blank (zero) in an indexed GOTO statement, it does not have

to be blank., Thus 3,V means to add 3 to the contents of V to get the
address used and 3,V is the same as ,(V+3).

T A {

Since ORDVAC {(See [1]) has both left and right orders (2 orders
per word), the GOTO will go to the proper side of the word if the
address is not indexed. Since the side it goes to 1s determined only
by the primary address, caution must be used with indexed addresses.
The effective address of all indexed addresses should be the location
of a left order. This can be accomplished by using location names
gin with a2 letter other than R for all location

transferred to by an indexed GOTO. (See VIII page 38.

4]

General Form: GOTO, index add.(Loc. to go to when index = 1)Loc
%

to go to when index = 2)

This statement will cause a program to go to different places
depending on the contents of an index register. When the contents
of the index register is an integer i, the ith location name on the
list of location names in this statement will be used as the location

of the next statement that is to be done. For example;

GOTO,I(A)B),k%b
will do a GOTO(A) statement when I = 1, and a GOTO(B) statement when
I = 2 and a GOTO(,K) statement when I = 3.

A decimal increment on the index address

W

enclosed in parentheses. For example;
GOTO, (J1 - 1)(11)12)%

will cause a GOTO(Ll) when J1 = 2 and a GOTO(L2) when J1 = 3. When

. . " " . .)
an increment is used, the "extra left parenthesis is required before

the first location name on the list.

21

For ORDVAC, each location on the list may go to either & left order
or a right order; they don't all have to go to the same side.

If by error, the value of the integer i1s zero, the computer wiil

cycle on one jump order. If the integer is too large, it will go on

tc the program 2t some peint below this statement.

Form: SET (Index add. = add. to put in index register). .

This statement should be used to set index registers to a

constant value. It cannot be used to set floating point numbers. The

value of the address itself (notthe contents of) written on the right
of the = is put into the index register specified. If this address is

a decimal or sexadecimal base number, then that number is put into the
index register. If this address is a symbolic name, then the address
that has been assigned to that name is put into the index register.
Hence this statement allows index registers to be set to addresses that
have been assigned to symbolic names of variables or locations. Indexed
addresses are not allowed (See 3. below) but a decimal increment is
allowed when the address is symbolic. Some examples of SET statements

are.:

Note that any number of index registers may be set with one SET statement
with each one separated from the previous one by a right parenthesis or

a right and a left parenthesis. A GOTO statement may be included at the
end of a SET statement without a % in between.

22

3. SETEA
General form: SETEA (Index add. = Indexable address)

This statement is the same as the SET statement except that
the. address on the right of the = is indexable and GOTO is not allowed
as part of this statement. Some examples of SETEA statements are
SETEA(I=A,J)%
SETEA(K=B,M+2) P = 14,117)%
This statement sets the effective address into the index register specifiegd.
L, INC

General form: INC (Index add. = Index add. + amount of increase

or decrease) 5000

This statement should be used to increase index registers by a

. 4 "n_n
t is writien after the =

constant amount. The index register name tha
(the same name should appear on the left of the "=") is increased by the
address itself (not the contents of) that is written after the first +

amount of increase

"n_n
or - sign that appears to the right of the =", Th

1]

may be symbolic and may have an increment but cannot be indexed. A minus
sign may be used to indicate a decrease only if the amount is not symbolic.

Some examples of the INC statements are

(P2 8 L 9 4 |

INC(TI=I+1)% INC(J=J-2)%
INC(S=S+03K)V=V+10)A=A+N-1 %

INC(R=R+41)G0OTO(,E)%

=
—~~

ay be used to increase (or decrease) any number of registers.

C statement without a %

This statement

A GOTO statement may be written at the end of an IN

ct

in between.

5. COUNT
General Form: COUNT (max. count) IN (Index Reg.) GOTO (ILoc. for

repeating loop)

23

This statement can be used to count the number of times &
loop 1s done and to also increase one index register. This index
register (specified after IN) is increased by one (or another amount
if it is s n or equal to the maximum
count specified after COUNT. (A symbolic "mex. count’ address will
be used as an index register whether a comma precedes it or not). The

increase occurs before the comparison! If the index register (s ci-

Pl 12001 42 LAE LIUCA ICKI1IBLEL

ry -d A1

fied after IN) is set to zero at the beginning of the loop and increased
(by one only)in a COUNT statement at the end of the loop, then max.
count 1s the total number of times the loop is to be done.

The amount to increase the index register may be specified
in three different ways. It may be written after IN by writing the
same type of formula as allowed in the INC statement, i.e. (I = I + 2)
would cause I to be increased by two. It may also be written by in-
serting "BY (increase)" between the max. count and IN as shown in the
third example below or it may be included inside the max. count
parentheses by the form of (max. count/increase) as shown in the fourth
example below. If no increase is specified, it will be used as one.
If the increase is n and n > 1, then the max. count specified must be
m times n in order that the loop be done m times. Thus COUNT (24/2)...
actually means the loop will be done 12 times (assuming the index started

at zero).

The max. count and the increase may be either absolute decimal

or sexadecimal integers, either explicit integers or the contents, at

run time, of index registers. In order to preserve the symmetry of

these two integer representations, symbolic names of index registers

may be written without the usual preceding comma. Thus COUNT (J/1-1)IN(K).

maoangc
A AL

+o use the contents of index register J as the max. count and to

1928y

increase the index register K by one less than the contents of I. If

r
1 times. (If =— 1 l is not

K starts at zero the loop would be done

n
=

an exact integer, the result appears to the machine to be rounded up to
the nearest integer; thus, if J = 69 and I = 3 then J/I-l would cause
the loop to be done 35 times.) Note that arithmetic expressions are not
d anywhere in a COUNT statement but that a constant increment

or decrement may be used with any address. Note also that the address
after GOTO (this GOTO may be replaced by any other English word) is

ump to when the index register has not reached its
upper limit. This will usually be the location of the beginning of the
loop since the COUNT statement will usually be the last statement in

the loop. The index register being increased 1s available within the
loop for indexing and the final increased value is available when the
max. count has been reached and control passes to the next statement.

Some examples of COUNT statement are

COUNT(20 YIN(J2)GOTO(BOX 3)%
COUNT(5)IN(K=K+1)GOTO(LOC 6)%
COUNT(N+4)BY(2)IN(R)GOTO(17.1)%

2 N}

COUNT(33/3)IN(I6)GO BACKTO(3.2)%

There is no inherent nesting limit of COUNT statements, the
only limit of nesting 1s the number of index registers avallable (54 on
BRLESC and about 3000 on ORDVAC). There are no restrictions on trans-
ferring into or cut of the loops controlled by COUNT statements.

On BRLESC only, it is possible to omit the "IN (index reg.)"
part of the COUNT statement if the increase amount is a constant number.
Such a statement counts by itself and resets itself to zero when the

1limit is reached; however, the loop must not be left by some other state-

ment.

25

6. IF
General Form: IF (ce) AND or OR (ce) AND or OR (ce).....
GOTO(Loc.)% where ce is any conditional expression that has the form
(AE relation AE relation AE) where AE is any arithmetic ex-
pression and the relation is <,<,>,> or =. The general form of "AE)
IS +" is also permitted for any conditional expression.

This statement allows a conditional transfer of control to
another statement. It goes to the location specified after GOTO
whenever the statement is "true". If the statement is "false", control
goes to the next statement. The AND condition always has precedence
over OR and this cannot be changed by using parentheses (this means
that the conditional expressions on both sides of any AND are grouped
together). However, any desired grouping of AND and OR conditions
can be obtained by writing enough IF statements and doing them in the

proper sequence.

Each conditional expression may be preceded by any one or more
of the following names that apply only to the next one conditional

expression:

-NOT ; Negate the meaning of the following conditional
expression. (Negate the relations and change the
implied "and" condition of several relations to an
"or" condition.) However, AND-NOT should not be
used before a conditional expression that contains
more than one relation. (The present FORAST trans-
lators will only negate the relations when this is
used and will not change the implied "and" con-
dition to "or".

-FLT ; Use floating point arithmetic to check the truth of

the next conditionsl expression.

26

-FIX Use fixed fractional arithmetic to check the truth

-e

of the next conditional expression.

-INT ; Use integer arithmetic to check the truth of the
next conditional expression.

-ABS ; This cannot be used when the = relation is involved
in the next conditional expression. For inequality
relations, the absolute values of both arithmetic
expressions are used to check the truth of all
relations in the next conditional expression.

-IF ; Allowed so OR-IF or AND-IF may be written. It is
also true that OR IF and AND IF (with or without the

space) may be written instead of OR and AND.

MODE arithmetic (see page 69) is used to check the truth of
any conditional expression that 1is not preceded by -FLT -FIX or -INT.

When the relation is =, a tolerance may be specified and the
conditional expression may have the general form of "AE = AE) WITHIN(AE)"
vhere AE is any arithmetic expression. Only one = relation is allowed
before the WITHIN and the AE after WITHIN is the tolerance. The equality
relation 1s considered to be true when the absolute value of the difference
of the two quantities 1s less than or equal to the absolute value of the

tolerance.

The GOTO portion of the IF statement may precede the IF or may
appear after any conditisnal expression. If the GOTO is at the beginning,
the conditional expressions are tested from left to right in the running
code. If the GOTO is at the end of the IF statement, the conditional
expressions are tested from right to left.

The following names should not be used as the names of arith-
metic quantities in IF statements: GOTO: OR; AND: IS: WITHIN: ORIF:

ANDIF. {Actuslly these names may be used except immediately followin

a right parenthesis.)

Q . VTAam ~AS TR P R .
Some examples of IF stavements are:

IF(Y=16)OR(X+AL)IS+GOTO(6L. T)
TF(A+B< R**2)AND(X > Y > 0)GoTO(LOC 3)
IF(Q=T-SIN(V/A))WITHIN(.001)GOTO(k.1)%
TF-INT(I=3)AND-INT-NOT(J=1)GOTO(DONE)%
IF-NOT(A=B=C JOR-ABS-NOT(X > = c3(coTo(,T)%

GOTO(WRONG)IF(X3-X1 < X3-Xk < =1)%

T o 1 .
In the following two examples, the statements on the same line

are equivalent:

IF(X>Y>1 Y
IF-NOT(X > Y > 1)GoT0(A)% IF{X < =Y)OR(Y < =1)GOTO(A)
7. CLEAR

General Form: CLEAR (count) NOS.AT (initial address)%

This statement may be used to clear a group of uniformly spaced
memory cells to zeroc. (Fla pt., fixed fraction, and integer zeros
are all identical.) The count is the number of cells to clear (or some
multiple of it if the count increment is not one). The count is written
in an index register and used exactly like the "max. count" in the COUNT
statement. CLEAR(I/B) does not mean to operate on every third lccation,
as one might expect, it simply means the contents of the desired index
register I happens to be 3 times the number of the number of cells that
are to be cleared.

The initial address is indexable and is the address of the first
cell to be cleared. Consecutive cells are cleared unless a different
amount of address advance is specified by writing it after a / after the
initial address. Counting by more than one may be done by writing

a larger counting increment after a / after the "count". If the counting

ne
[@¢]

and address advancing should use the same increment, it may be written
in parentheses just before %. If any of the count or address advance

increments are symbolic, it uses the contents of that cell and assumes

8
+head +h
that the cell 1s an index register containing an integer number at run

wia

the count is zero. If three or fewer cells are to be cleared it is

more efficlient to write arithmetic formulas instead of a CLEAR state-

mant
dCIv

e,g. an arithmetic formula of Y = O means to clear cell Y.

)

Some examples of CLEAR statements are:

CLEAR(20)NOS.AT(A)%
CLEAR(I/2)NOS.AT(X2)%
CPWAQ(N+K\NOS.AT(R’J+1/4)%

AV &Y Y) jAN

CLEAR(K-%)NOS.AT(B1)(3)%

te that the I/2 count in the second example actually means
to clear 1/2 cells, i.e. the / symbol here actually can be interpreted
as indicating integer division with the nearest larger integer being
used for inexact quotients. In the third example, every fourth cell
is cleared to zero, until (N+3) cells have been cleared or h(N+3) cells
have been "passed over."

8. MOVE

General Form: MOVE (count) NOS.FRM (add.) TO (add.)%

This statement may be used to move the contents of a uniformly
spaced group of memory cells to a different group of uniformly spaced

memory cells. The count is exactly the same as was defined for the

~TTIATY

CLEAR statement. The initial addresses of each group of cells are

written as shown above and each may be followed by & / and an address

29

advance increment that may be either positive or negative or zero. If
it is symbolic, then it is assumed to be an index register and its
contents are used as the advance. Only one symbolic name is allowed

in each advance increment. Any count or advance increment not specified
will be 1. If the increment for counting and advancing both addresses
should be the same, it may be enclosed in parentheses and inserted just
before %. At least one number is alwsys moved, even if the count is
zero. If three or fewer numbers are to be moved, it is more efficient
to write arithmetic formulas to do the moving, e.g. an arithmetic
formula of A = B% means to move the quantity from B into A.

Normally the initial address of the two groups of cells are
used and positive advance increments are used. However, if the initial
address of the "to" group of cells is the same as any one of the"from"
group of cells, then the moving must be done "backwards" so that all
cells get moved before they are moved into. In such a situation, end
addresses of each group of cells must be specified in the MOVE state-
ment and negative advance increments must also be specified. (See the

last example below.)
Some examples of MOVE statements are:

MOVE(144)NOS. FROM(A1)TO(B1)%
MOVE(N+4/4)NOS. FROM(Q+2)T0(Q)%

MOVE(J)NOS. FROM(X,M/3)T0(Y,N)%
MOVE(R-2)NOS. FROM(C2/0)TO(V1/K+1)%
MOVE(600)NOS. FROM(B600/ -1)TO(B700/-1)

9. ENTER
General Form: ENTER (subroutine name) (add.)....(add.)%

30

Th

is
conform to the one argument and one result type that are allowed in

statement allows the use of subroutines that do not

arithmetic formulas. (See pages 75-95 for the entire list of standard
subroutines that are included in the present FORAST translators.)

The subroutines allowed in formulas (except ABS) may also be entered
with an ENTER statement. The list of addresses following the subroutine
name are the addresses of the arguments and results and the number and
meaning of these addresses varles with the subroutine being entered.

The subroutine name address is not indexable (ORDVAC restriction) but
most subroutines allow any of the other addresses to be indexed. An
address specified for an argument or a result is usually the memory
location that contains the argument or will contain the result. However

= . R) ke

4+ 1 AA .
some subrouti ome addresses (which are necessarily integers) aa

2]

1eS use
being an integer argument, Thls 1s done for dimensions of matrices,

number of equations, number of points, etc. where the argument is often
d hence can be written as an address
address is variable, then the integer argument must be stored in an
index register and the address written with a comma in front of the

so that the effective address 1s the desired integer

argument. Small letters are used in the list of subroutines (pages 75-95)

e
to denote the addresses that are integer arguments.

o T

Constant numbers may be written instead of the address of an
argument only if preceded by an *¥. The type of number may be determined

by inserting F,X or I Dbetween the * and the number. In the absence

of F,X, or I, the number will be converted to the MODE type of arith-

metic. (See DEC, page 56 for the rules for writing decimal constants.)

7

ENTER statement is not restricted to enterin

[=

11!
subroutines, it may be used to enter any sequence of statements or machine

instructions that provide for using the string of addresses and returning

31

to the statement that follows the ENTER statement when the "subroutine"
is finished.

Some examples of ENTER statements are:

ENTER (SINCOS)X)SINX)COSX %
ENTER(SINCOS)(*2.7)SIN 2.7)(COS 2.7)%
ENTER (ARCTAN)V,I-1)ATV)%

ENTER (MAT.MP)A1)B1)C1)3),I+1)6 %
ENTER(PRINT BLANK)%

10. READ and FRINT or PUNCH

General Forms:

READ(add.)(4dd.).....%

READ(count)NOS.AT(add./increment)%
PRINT-FORMAT(format add./subgroup)-(add.)...(add.)%
PRINT(add)...< string of characters > %

The READ statement allows decimal numbers to be read from cards
(or tape on BRLESC) and the PRINT (or PUNCH) statement allows decimal
numbers and/or alphanumeric characters to be punched on cards (or, on
BRLESC, to be put on tape). There is no difference between PRINT and
PUNCH, the type of BRLESC output depends upon the setting of a console
switch.and the use of SET.TO as a statement or subroutine.

The addresses of the quantities to be read or printed may be
specified as either a list of single addresses or by stating the total
number of numbers (count), the initial address, and the address increment
if 1t is other than one. The "count" must always be separated from the
address by the use of "NOS.AT" and the "count” is always the total

number of numbers actually read or printed (or punched) regardless of

whether the address increment is one or not. The count and address
increment are integer numbers and a symbolic address will be used as

an index register whether a comma precedes it or not.

The entire list of quantities involved in any one READ or PRINT
or PUNCH statement may be any combination of single addresses and
"NOS.AT" clauses. PRINT or PUNCH statements may also contain a string
of alphanumeric characters that will be punched in addition to any
numbers that are punched. The character < must precede the string and
the character > ends the string. Any character except > may be used
in a string and blank characters within a string are not ignored. A
string of characters cannot be continued (by using CONT, see page 52)
from one program card onto another. If a string is too long for one
card, it must be written as two or more shorter strings with each one
completely contained on a card. A string of all blank characters may be
indicated by just writing "n >" where n is a decimal or sexadecimal
number of blank columns to be inserted in the output. The n must be
preceded by "(" if it appears first in the PRINT or PUNCH statement.
For example: PRINT (7 >(A)21 >Bb wouid skip 7 columns, print the

nunber called A, skip 21 columns and: print the number called B.

The type and length of decimal numbers read or punched is controlled
by a format word. If no format is specified, then a standard format that
allows six numbers of twelve columns each on each card is used. The
input numbers may be either floating decimal with an exponent or with
a decimal point punched (or both) and are stored as floating point numbers.
(See FORM, T = 10 page 63). The standard output format assumes floating
point or integer numbers and will print six numbers of twelve columns
each. The floating point numbers will have exponents and an assumed
(not punched) decimal point to the left of the coefficient. (See FORM,

T = 9 page 63). (The standard floating point format for each number is

sign and eight digit coefficient with sign and two digit exponent.)

A non-standard format may be specified in any READ or PRINT
(or PUNCH) statement as illustrated in the third general form above. To

33

specify a format, PRINT (or READ or PUNCH) must be

(minus sign) and the next name enclosed in parentheses is the n

followed by a dash
of

It 1s suggested that the word FORMA'
The format address may be

i1s the

the first format word to be used.

L

be written between the dash and format name.

followed by a / and a subgroup integer number. The subgroup

A

numoer

of numbers that are %o

o

be punched or read on one card {(or on

group of cards). Whenever the subgroup number of numbers has been

read or punched, a new card 1s started and the format i1s started from

+ 1.

the beginning. A zero or omitted subgroup means that there isn't any
subgroup. The format address and the subgroup are not indexable

(ORDVAC restriction). (See FORM, page 59 for information on storing

fomn+ warda)
IatT wordsS, ;

The name "NOS.AT" must not be used as the name of a number

feal
(o]
o

+hat+ W 3
that NOS.AT may be followed by a

n used on input and output

the y(or 12) punch. For input, any number that is not negative is

positive and the standard output plus sign is a blank column. However

the meaning of the punches may be changed by using the SETMSI

SETMSO, and SETPSO subroutines

Signs normally occupy & column
punched." However they may be

leading digit of the number by

(for output) in an ENTER statement.

in an ENTER statement. (S
by themselves and are said
"double punched" (pu
using SETDPI (for input) or SETDPO

(See page 7). Note that double

onithe hi-speed printer, it would print
tandard sentinel card for READ

read except when the blank card is the first card read by a READ state-
ment. Thus a READ statement may be written to read a large amount of
data and the actual amount of data stored may be controlled by insert-
ing a blank card at the end of the data. (The maximum amount of numbers
that may be specified is 16383 but ORDVAC uses the amount modulo 4096.)
If it is desired that a READ statement should read no data, it is
necessary to insert two blank cards because the first card is ignored

if it is blank. The letter S (or the word STOP) punched in place of
a number on an input card also stops the READ statement from reading in
the same manner as a blank card does. (The S must not be punched in
the sign column for ORDVAC.) If a field is punched with the letter X
in any column except the sign column, no number is stored from this field.
The next number will store in the same place the previous field would
have stored. An "X field" will be counted in the subgroup count (if

ct

there is one) but not in the total number of numbers that is left in
index 9 and the next format type is used for the next field. Note that
an "X field" is a way of removing a number from the middle of a group of

s
numbers without repunching them. It is not a way of not storing a number

ct

in an address specified in the READ statemen

1.

new card is started within a statement only when the format or subgroup

indicates that a new card should be started.

After a READ statement, the number of cards (not counting blank
cards) read by that statement is always left in index 8 and the number

of numbers stored is left in index 9 as integer numbers.

The strings of alphanumeric characters allowed in FRINT or
PUNCH statements are entirely extra and are inserted on the card wherever
they occur in the statement. If the string occurs at the same place a
format word indicates a skip, start new card, etc., the string will be

punched before the format action occurs.

35

The format does not need to include anything extra to print the alphanu-
meric characters nor is ary part of the format word used or skipped while the
racters is being printed. A number printed after a string

of characters begins in whatever column follows the string on the card.

The symbols < and > may be used without parentheses between
them and the addresses of & number. As usual, the left parenthesis
preceding an address 1s optional after a right parenthesis or after >.
The dash (minus sign) must always be used both before and after a FORMAT
specification.

Some examples of READ and PRINT or PUNCH statements are:

READ(X)(Y)(2)% READ(24)NOS.AT(Al)%
l) fvr o)

READ-FORMAT(F4)-(8)(T)(16)NOS.AT(B1,1)%

']

READ(U)(V)4)NOS.AT(X/2)(A)B)J+2)NOS.AT(R1/I-1)%
PRINT(X)(Y)(Z)% PRINT < X IS TOO BIG> (X)%
PRINT-FORMAT(QT/3)-(K)NOS.AT(AL)(OKS)NOS. AT(M1,1)%
PUNCH< X =>(X) <Y =>(Y) <Z =>7%

PUNCH(4 > < HEADING > 6 > < RANGE > 5 > < HEIGHT > %

11. HALT
General Form: HALT (Display address)%

address 1is optlonal, but if 1t is used, it will be displayed in the halt
order. (It will be in the first address of a BRLESC halt order.) If
the computer is re-initiated, 1t will continue with the next instruc

or statement. If a problem is done running or can not run further for

some reason, a GOTO(N.PROB)% statement shculd be used instead of a HALT

statement.

w
()Y

Examples: HALT % HALT(3) % HALT(ONO)%

VII. PROGRAM CARD FORMAT

FORAST program cards are divided into four fields as follows:

Columns Use
1-6 Location field.

7 - 10 Order Type field.
11 - 76 Formula and Statement field.
77 - 80 Identification.

The location field (cols. 1 - 6) may be used to assign a name

to the first statement or constant that appears on the card. (See VIII
page3S J.

The order type field (cols. 7 - 10) is used for the "pseudo
order types" that provide translation information and may be used for
the order type of assembly orders. The order type fileld determines how
the rest of the card 1is interpreted and is to be left blank when the card
contains arithmetic formulas and/or English word statements.

The formula and statement field (cols. 11 - 76) is primarily
used for arithmetic formulas and English word statements. It may also
be used for assembly orders, numbers, translation information, comments,
ete. The meaning of this field 1s controlled by the order type field.

If this formula and statement field is not long enough, it may be con-
tinued onto the next card by using CONT in the order type field of the
next card. (See CONT page 52). This field may be terminated before
column 76 on any card by using "$%". (In some of the pseudo order types,

only one % is required to terminate it.) Comments may be inserted after

37

such a termination. The % after the last formula (or statement, etc.)
on a card may be omitted.

The identification field (cols. 77 - 80) is never used as part
of a program. Anything desired may be punched into these four columns.
To simplify the key punching of FORAST programs, it is recommended that
these four columns be used only for a decimal numbering of the program
cards. (This numbering may be reproduced rather than key punched on the
cards and need not be written by the programmer.) Error prints obtained
during translation of a problem will also print the identification field

of the card that contained the error. (See section XI).

VIII. USE OF LOCATION FIELD

The location field (cols. 1 - 6) may be used to give a symbolic
name to the first 1lnstruction or the first number that is coded from a
card or it may be used to specify an absolute storage address for the

orders and/or numbers that appear on the card and on the following cards.

The location field is ignored when it is blank. It 1is also
ignored when it has the same name (symbolic or absolute) as the last pre-
ceding non-blank location field. This allows extra cards to be inserted
in front of a card that has a location name and the location name
designates the first of the cards that have the same location name; this
facilitates insertion of a temporary PRINT statement for checking. If
some other location name is used between the two locations that have the
same name, then the code generated at the second location will be stored

over the code generated at the first location and will destroy it.

The location field controls an absolute machine address which

shall be referred to as the "location counter." This address normally

38

starts at 0100 (sexadecimal,01040 for BRLESC) and is advanced by one for each
machine word that is generated by the FORAST translator from the FORAST
program. If any decimal or sexadecimal absolute address appears in the
location field, then the location counter is set to that address. If this
is done, the old location counter address is not remembered by the trans-
lator and all following generated code will be stored consecutively

from the new address until a location field is encountered that will

cause the storing to begin elsewhere. Thus changing the location counter
may control the storage of many following cards, not just the card on

which the new location appears. If a symbolic address that has not yet
been assigned appears in a location field, it immediately becomes assigned
to the address that is in the location counter at that time. Thus t
assignment of machine addresses to all nsmes that appear in the location
field is done as soon as these names are encountered. If a symbolic
address that has previously been assigned (by being a previous location
or in a SYN or BIOC statement) appears in a location field, then the

location counter is set to the address that was previously assigned to

Special rules apply to names in location filelds that are within
d

viously defined "BLOC". (See BLOC page 44.) If an unassigned block

address is used in a location field, then the initial name of the block
is assigned to the current value of the location counter and the location

counter is then advanced to the actual address within the block that was

v v) %
X1 - X4 was defined as a

o]

used in the location field. For example, if
unassigned block and the location counter was currently at 0142 and then
if X3 was used as a location, X1 would be assigned 0l42 and the location

counter would be advanced to Ollk4, which is the address of X3, and the
next generated code or number would be stored in X3. Thus space is

allocated for a block up to the block name used but not beyond it. If

39

space should be left for the entire block, then the name of the last
cell in the block must be used in the location field. If a location
block address has previously been assigned, the location counter is
set to the actual assigned address within the block.

Increments may be used on symbolic location addresses. If
the symbolic address has been assigned, then the location counter is
set to that address plus or minus the increment. Thus A + 2 would
set the location counter to 0202 if A was previously assigned to 0200.
If the symbolic address has not been assigned, then it is assigned to
the location counter first and then the increment is added to or sub-
tracted from the location counter. Thus a positive increment on an
unassigned address causes the location counter to skip shead and a
negative increment causes it to be set back and probably causes some

previously generated code to be destroyed.

SELF is a symbolic name that may be used to refer to the
location counter. It cannot be used for any other purpose. If SELF
is used in any instruction or statement, it is temporarily assigned to
the current location couﬁter address. (In assembly orders, it is the
location of the order that it is used in.)

Since ORDVAC is a. single address computer with two orders per
word, it is necessary to have some special location field rules so that
the programmer will have some control over the storage of left and right
orders. Since BRLESC is a three address computer with one order per word,
the special rules in this paragraph do not apply to BRLESC. If a location
field on ORDVAC contains either an absolute machine address or an un-
assigned symbolic address that does not begin.with the letter R or a
decimal digit, then the next order coded will be a left order. If an

Lo

unassigned symbolic location address begins with R, then the next order
coded will be on the right side. If thke symbolic location address begins
with a decimal digit, the next order will follow the previous order and
hence may be either left or right. Thus orders that should be coded on
t side of a word should be given & location that begins with a
letter other than R and orders that should be coded on the right side
should have locations that begin with R. If the next order may be coded
on either side, then it is best (but not necessary) to use a location
name that begins with a decimal digit. The ORDVAC FORAST translator
+ l) conditional stop order whenever it inserts a
the next order will be on the proper side. These
special location field rules apply only when ORDVAC is generating orders,
not when constants and full words are being stored by DEC, SEXA, etc.
pseudo order types. These full word constants always occupy a full word
and the location counter will be advanced by a half word if necessary
before storing a constant. The CRDVAC dictionary listing prints L's
and R's to indicate left and right location names. OSELF 1is used as a
left location regardless of which side the location counter is cﬁrrently

on.

On BRLESC, symbolic index names must not appear in a location
field unless they have been previnusly assigned or used as an index register.
(Index register names get assigned on BRLESC as soon as they are used as an
index register.) If an assigned index register name is used in the location

field, the location counter is set to the assigned address.

It 1s not necessary for all symbolic addresses to appear in a
location field. The tramnslators automatically assig
all symbolic names that remain unassigned when the END of the program is
reached., This assignment of all of the rest of the unassigned names begins
ddress that is in the location counter after the END card (See
END page 63) 1s processed, hence the location counter must be left at some
address that has enough space after it for assignment to all of the un-

assigned names., This automatic assignment of addresses i1s done so that
all names have unique storage except for those names that appear within
SYN statements (See SYN page 48). Enough storage space is always left
for all blocks and when SYN is used to make a name in a smaller block

(or a non-block name) the same as one in a larger block, the larger

block is assigned first so that the smaller block will fall within the
larger block., If neither of such blocks is completely contained within
the other, enough space is left to provide storage for all of both blocks.
This machine assigning is done in the sequence the names appear in the
dictionary except for the names that appear in SYN or LAST pseudo order
types. {BRLESC will assign some and possibly all of the single variable
names between the constant pool and the subroutines). Hence if certain
names or blocks must be assi
programmer should use these names in location fields or on a "LOC" card
(see 1OC page u9) to insure that they are assigned to the proper sequence

of memory positions.

IX. Pseudo Order Types

The order type field (cols., 7 - 10) may be used for any of the

pseudo order types that are defined below. There are two major types of

pseudo order types; (1) there are those that do nothing but allow the

ogrammer to control to some extent the translation of his program and

~ g
"

} there are those to be stored as part

n

of a FORAST program. On every card, the order type determines the type

of information the translator expects to find in the formula and state-

mand
ucii v

]

11 - 76). The list of permitted pseudo order types is:

1o fidl
i< . O/« 210 240 eI'mi

1): PROB: BLOC: SYN: LOC: LAST: CONT: LIST: END: DATE: COMM: MODE: STOR:

NOS.: FTTS: ASGN: SUBR: O0.T. (2): DEC: DEC=: FORM: SEXA: ALFN

A PROBlem card should be put at the beginning of every

a L 400D

FORAST program to identify the program. It should contain the problem
number, the programmer's name (or at least initials), the approximate

rogrammed and a brief title or description of the problemn.

42

it is printed out ahead of the dictionary and/or the problem output to

ldertify these outputs.

For BRIESC, o PROB identification card is mandatory and a proper
problem number must be recorded on the PROB card after "PROB". A
program that does not have a PROB card before the first formula (or

the END card) will not be compiled or run.

he problem number, to which the computer time is to be charged
should be the first thing after column 10 and must not extend beyond
column 20. If other characters follow it before column 21, there must
be one of the following characters at the end of the problem number:
blank - + () % or comma. If any of these characters are inserted
before or between the first three characters of the problem number,

they will be iincred.

If more than ore PROB card is used in one program, the first one is
the one that wilil actually be used. The others will be ignored. (Any

PROB cards that have cols. 11-20 blank will be ignored.)

compiler and N. PROB subroutine make use of the real time clock to keep
P

a record of the computer time that is required to run each problem. This

record consists ¢f punching the PROB card at the beginning of the problem

with cols. ©1-7C replaced with the date and cols. 71-80 replaced with
the "start time". At the end of the problem, another card is punched

that contains the problem number in cols. 1-6, the "charge time" in
cols. 7-1C as hrs. and mins., the total time, the compile time, the
date, and the "stop time" in cols. 71-80. These two cards for each
problem will bve punched into a special hopper on the card punch unit

and thus will not appear wi h the normal outputs.

Whent the C. PROB subroutine is used to compile several programs
consecutively, the BRLESC time will normally be charged to the problem

number that ic on the PROB card in the last program. However, all of

L3

the PROB cards should have the same problem number and the PROB card of
the first program is the only one that will be punched for the time-
keeping record with the start time on it. The compile time will be only

for the first program compiled.

If you have a legitimate reason :or not being charged for running
your problem, a card having "NO CHARGE" in the cols. 11-76 field may

be inserted to cause the BRLESC charge time to be zero.

The location field of a PROB card is always used. A PROB card that
is blank in columns 11-20 is ignored except the location field is still
used. Example: PROB 647.1 J.Q. BROWN JULY 1961 AIR FLOW

B. BLOC

This is used to define the names and sizes of one or two dimensional
blocks of storage. Two dimensional blocks of storage will be referred

to as arrays.

One dimensional (linear) blocks are defined by writing the symbolic
names of the block followed immediately by the initial decimal integer
"subseript". (The word subscript will be used here to refer to the
decimal digits, however the subscript is written on the same line as
all of the other characters in the name.) Thus Al could be the name
of the initial cell of a block. A dash (minus sign) is used to separate
the initial block address from the final block address. The final block
address must have the same letters as the initial address but they are
followed by the final decimal subscript. Thus Al - A10 would be the
definition of a linear block of ten memory positions and each position
in the block may be referred to in the rest of the program by using the
names Al; A2; A3; Ah; AlO. Note that A and Al2 are not names that
are a part of this block and may be assigned memory positions that are
gquite different than those assigned to the block Al1-Al0. The initial
subscript may be blank or zero or any positive decimal integer and the

final subscript would normelly be larger than the initial subscript.

By

(Only BRLESC allows the final subscript to be smaller in which case

the smaller subscripts are assigned to larger addresses than the

larger subscripts.) If the initial subscript is blank (omitted), it

is used as zero but has the additional effect of allowing the initial
cell of the block to be referenced by no subscript or a zero subscript.
Hence if B -~ B6 1s defined as a block, the initial cell may be called
either B or BO.

| T

The complete block name, including the largest subscript,
must not be more than six characters on ORDVAC. On BRLESC, a total of

el

m

ht characters is allowed with the following restrictions; 1if the
block name is three or less characters, the subscript may be any 5
digits, for four letter btlock names, the subscript must not be larger

than 4095 and for five letter names, the subscript must not be larger

secutive memory positions unless the block definition is followed by
a / symbol and a decimal, or sexadecimal or a previously assigned
symbolic name (that may have an increment) that determines the spacing
between each element in the linear tlock. Hence TO - T20/2 may be used
to specify a linear block of 21 memory positions that uses every other
position, 1.e. if TO is 0200, then Tl is 0202, T2 is 0204, etc. If a
symbolic name is used to indicate the spacing, 1ts previously assigned
address (not its contents at run time) 1s used, i.e. the bloc spacing
is fixed at compile time. (A SYN statement would normally be used to
assign a symbolic name for this purpose.) Non~consecutive spacing is
allowed on linear blocks so that several of them may be "interwoven"

by using a LOC pseudo order type. (See LOC page .49).

A linear block definition may be preceded by "absolute
" "

2
I/". The absolute address will be assigned to the
initial name of the block and the "I" will cause the block to be

address /" or

assigned to index registers. (The "I/" is only necessary when the
block must be assigned to lndex register memory. Thus the full

general form of a block definition is:

(I or mach. add./initial name - final name/spacing)
Some examples of linear block definitions would be:

BLOC(B1-B22) (A-AL20)MAT 5-MAT 20)T1-T60/3)

BLOC(I/I1-I4)0600/3R-3R199)

Two dimensional blocks (arrays) may be defined and referenced
by writing a symbolic name and a row subscript followed by a comma and &
column subscript. Ml,1 - ML,k would define an array that has four rows
and four columns and requires sixteen consecutive memory positions. All
arrays must use consecutive memory positions and are stored by rows, i.e.
the names of consecutive positions of M1, 1-M4, 4 would be M1,1: Ml,2:
M1,3: Ml,L4: M2,1: etc. The initial and final row subscripts can be zero
or any positive decimal integer. (The initial column subscript must be
less than 64 and the final column subscript must be less than 256 plus

the initisl column subscript.) Arrays may be square or rectangular and

stored when SY. is used and the lower triangle is stored when LSY is used.
For SY. arrays, the column subscript must be greater or equal to the row

subscript and for LSY. arrays, the row subscript must be greater or equal
to the column subscript. SY. arrays may have more columns than rows (may

be augmented) but LSY. arrays cannot have more columns than rows.

The symbolic letter positions of array names should not have
more than fou

~
=

etters (small arrays of less than 64 memory positions may

Y
he letters should be different than the

A N
general y n

= P I - « -
ive letters) and th

g

ave
letters used for any linear blocks. (FORAST translators handle array
addresses by "linearizing" them and linear block names must therefore be
h

1
different than any array address that has been "linearized. Thus Ml

2ilis L)

is the same as M4,3 in the array Mi,1-Mi, L and must not be a part of any

46

linear block.) Arrays cannot be assigned to index register storage.

Some examples of array definitions are:

BLOC(R1,1-Rk,6)(0800/AT1,1-AT10,5)
BLOC(BQ1,1-BQ10,11/SY.)MAT-MATS,5/1SY.)

Afray addresses may be indexed by using a second comma
after the array name followed by an index register name. Thus R1,1,I
illustrates the method of indexing R1,1 by I. If the index register
address used to index an array address is decimal or sexadecimal, it
must be enclosed in parentheses. Hence R1,1,(10) is the way R1l,1 can
be indexed by index register ten. (Note that R1,1 would be Rl indexed
by index register one if Rl,1 was not defined as part of an array.)
Indexing in FORAST should not be thought of as variable subscripts, it
is simply the addition of a variable integer to a primary address that
determines the actual address used at run time. This means that Al is
not necessarily the same as A,I when I contains a one, they are the
same only if the initial cell of the block is called A. If the initial
cell is called Al and it is desired to reference Al,A2, etc., then it
should be written Al,I where I assumes consecutive integer values start-
ing at zero. This emphasizes the fact that the subscripts used with
the letters of a block or array name must "fall within" the block or

Pl an o an 2 eTas) at=% oo} ~
he name is & member of the block or array.

array before t

A block or array definition (BLOC card) must precede any
reference to members of that block or array. It is wise to define all

blocks and arrays before writing any other symbolic addresses.

Columns 11 - 76 of a BLOC card may be used to define one
or more blocks or arrays. Successive definitions should be separated
by a right parenthesis (a left one is optional) and a "%" may be used
er the last cne toc ignore the rest of the card. The locatisn field

should not be used.

=
=]

C. SIN
This may be useéd to assign absolute addresses to symbolie

names or to allow different symbolic names to be assigned to the same
memory space. For some problems, the memory may not be large enough
to allow a unique position for each and every number, thus it may be
necessary (to avoid using drums or tapes) to use the same memory
position for more than one number when such numbers are not needed at
the same time. A and Q normally would be assigned to two different

marsmcamn ATl T 2 Tidk 2O A g o
Cmory Cclls vuL 11 A 18 C

i r used before § is
computed, then it would be all right to store Q in the cell that pre-
A

viously contained A. SYN statement of (A=Q) would cause the symbolic

names A and Q@ to he aggsioned to the game memorv rcell
ARSCs A SUl g VW VT aoolpdll VO LAC Sadilc alidly (LLad.

Each synonym definition is of the form:

(AG@d. = Add. = = Add.)

_____ L W, S W T3

Iy wm L crnne darmm AL AAAnme & a f VLo ol o 2\
where Add. may D€ any 1ype Ol &aadress allowed L{apsolute Or symbolilc)

but increments cannot be used in a SYN statement. Addresses within

blocks or arrays may be used. The same effect as increments can be
ne Or mo
SYN statements to obtain the desired storage arrangement. However the

LOC pseudo order type is usually sufficient for this purpose. (See LOC

SYN cannot be used to reassign any address that has been
iom (

ust not be more than

\SGN page 73). There
F ot =) L

one address in each synonym definition that is an absolute address or

has been previonsly assigned. As soon as any one name within one

synonym definition becomes assigned, then the other names are assigned

48

The addresses in SYN definitions are always assigned
properly (no unexpected overlapping of storage) if the machine assigns
the first address in that definition after the END card. However, if
the programmer causes one address in a definition to be assigﬁed by
using it in a location field (or another SYN statement, etc.), then
the other addresses are assigned accordingly without any checks for

rage. When the machine assign

a nama +h
Qa LIGdUC VL

[}

in a synonym definition, it allows enough space for all of the blocks
or arrays that are assigned because of the synonym definition and
smaller blocks or single names are always assigned within the larger
blocks.

Each synonym definition should be separated from the next
one by a right parenthesis though a leading left parenthesis is optional.

A "%" after a definition causes the rest of the card to be ignored.
Some examples of some SYN definitions are:

SYN(A=B=C)R=20)K1, 4=DELTAV %
SYN(G14=E10=F1=T)(T=T1=Q)

The location field of a SYN card should not be used.

The ORDVAC FORAST translator has a limit of 64 (55 if the
computed GOTO statement is used) unassigned symbolic names that are
used in SYN definitions. Thus an ORDVAC program must not use more than
64 (or 55) names in SYN definitions until some of them are assigned.

BRLESC allows 288 vnassigned SYN names.
D. IOC
A I0C card allows many "locations" to be spec
card. The location field is first processed in the normal way and then

the addresses in cols. 11-75 are also processed as "location fields".
(See VIII page 38).

k9

A IOC card allows a programmer to cause a list of symbolic
n<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>